Search Results

Chemistry 1: Chemical Principles (with Lab) — CHE2211.01

Instructor: Fortune Ononiwu
Days & Time: T/F 2:10PM-4:00PM, Th 8:30AM-12:10PM (Lab)
Credits: 5

This course is the first of a four-course chemistry sequence covering general, organic and biochemistry. Students do not need to take the entire sequence. We will focus on introductory chemical principles, including atomic theory, classical and quantum bonding concepts, molecular structure, organic functional groups, and the relationship between structure and properties. The class will have lecture/discussion meetings at which we will critically examine the major concepts of reading assignments, discuss articles, and review some of the current developments of the field.

Blockchain/Web3 as an evolution of the consumer web — CS2138.01

Instructor: Michael Corey
Days & Time: TH 3:40pm-5:30pm
Credits: 2

The large-scale consumer web has been defined by epochs. The first epoch was defined by the user as consumer: large companies created content which was consumed by the masses. The second web epoch (web 2.0) has been defined by consumer creators, large companies own and deliver content created by users to other users (Facebook, TikTok, Snapchat, Twitter, Instagram, …). The third web epoch is—if you believe the hype—to be defined by self-ownership of content.

Electronics Lab — PHY2213.02

Instructor: Hugh Crowl
Days & Time: MO 1:40pm-5:20pm
Credits: 2

This course will serve as an introduction to working with circuits in a lab setting. We will learn about the relatively simple rules necessary for working with analog circuits and how those rules can be used to build objects of growing complexity. We will then move on to understanding how to build circuits that can measure properties of and interact with their surroundings.

Visualizing Science — CHE2249.01

Instructor: Dor Ben-Amotz
Days & Time: WE 2:10pm-4:00pm
Credits: 2

In this class we will explore the art and practice of scientific communication. This course is inspired by the work of Edward Tufte as well as a lifetime of experience in scientific research and presentation. Our aim is to learn how to create elegant explanations of complex ideas using pictures, charts, numbers and words. We will analyze and produce displays for use in journalism, research publications and scientific presentations, as well as other art forms that inspire multifaceted understanding.

Linear Algebra: An Introduction — MAT2482.01

Instructor: Joe Mundt
Days & Time: T/Th 6:30PM-8:30PM
Credits: 4

Together with calculus, linear algebra is one of the foundations of higher-level mathematics and its applications. This is NOT just the algebra you know from high school. There are several perspectives one can take on linear algebra: it is a method for handling large systems of linear equations, it is a theory of linear geometry (including in dimensions larger than three), it is matrix algebra, and it is a theoretical structure that appears throughout mathematics, physics, computer science, and statistics.

Sets and Structures — MAT2121.01

Instructor: Andrew McIntyre
Days & Time: MO,TH 1:40pm-3:30pm
Credits: 4

In the eighteenth and nineteenth centuries, mathematics underwent a vast expansion, into new, exciting, and increasingly counter-intuitive realms. The subject risked mystification and mutual incomprehensibility between experts in different sub-fields. In the first part of the twentieth century, a group of French mathematicians, under the pseudonym Bourbaki, undertook an ultimately successful program to use the foundation of set theory to put all of mathematics onto a common conceptual and logical foundation.